Webel vs SysPhS-1.1: Annex A.5: Humidifier: In the Webel version it will be tentatively assumed we are in fact dealing with a large humidified space like an office building NOT a single "humidified room" - despite the block name HumidifiedRoom in the spec
Webel vs SysPhS-1.1: Annex A.5: Humidifier: If the WaterTank::tankVolume 50,000 is measured in litres (L) the VaporPressureCalculation::volume within the HumidifiedRoom can't possibly be 25000.0 litre (L), it has to be 25000.0 (m^3), which is NOT a "room"
Webel vs SysPhS-1.1: Annex A.5: Humidifier: It is assumed that 'HumidityBalance::volume = 25,000' and 'VaporPressureCalculation::volume = 25,000' are the same fixed SpaceVolume in cubic metres (m^3).
Webel vs SysPhS-1.1: Annex A.5: Humidifier: Dimensional analysis of VaporPressureCalculationConstraint implies each 1 mL of water is equated with EXACTLY 1 g of produced vapor.
Webel vs SysPhS-1.1: Annex A.5: Humidifier: Dimensional analysis of VaporPressureCalculationConstraint implies the output is a pressure rate, which makes no sense as consumed by RelativeHumidityCalculation and is inconsistent with the rest of the system.
Webel vs SysPhS-1.1: Annex A.5: Humidifier: Dimensional analysis of HumidityBalanceConstraint implies constraint parameter 'airExRate' in {change=((humidity-envH)*(volume*airExRate))} is per-volume, assuming that 'volume' is a fixed Volume.
Webel vs SysPhS-1.1: Annex A.5: Humidifier: Dimensional analysis of RelativeHumidityCalculationConstraint implies constraint parameter 'change' in {der(x)=((press/satVap)-change)/c2} is a unitless relative humidity, given that 'c2' is a Time.
Webel vs SysPhS-1.1: Annex A.5: Humidifier: It is assumed that "vapor" is a volume rate corresponding to the rate of consumption OF HEATED LIQUID WATER (from a tank) used to create the vapor.