CoolProp: Mathematica wrapper: Psychrometrics (humid air): When obtaining the dew point temperature 'Tdp' at the pressure 'P', humidity ratio 'W', and dry bulb temperature 'Tdb', the 'Tdb' value will be "ignored" but MUST be within a sensible range!
Webel: Psy/MPsy: Psychrometrics for Mathematica: The default newPsy[tdb] builder accepts the pressure 'p' as an option, which defaults to sea level atmospheric pressure.
Webel: Psy/MPsy: Psychrometrics for Mathematica: The CoolProp "wrappers" of the Psy library in fact wrap lower-level wrappers (bindings) for CoolProp for Mathematica
Webel: Psy/MPsy: Psychrometrics for Mathematica: The default MPsy class is a readonly one-shot class that pre-builds many frequently used psychrometric properties (offered as public fields) using CoolProp, and also offers some value-adding methods.
Webel: Psy/MPsy: Psychrometrics for Mathematica: The default newPsy[tdb] builder requires the dry bulb temperature 'tdb', and one (only) of the relative humidity 'r', the humidity ratio 'w', or the wet bulb temperature 'twb' (as options).
Webel: Psy/MPsy: Psychrometrics for Mathematica: Most CoolProp wrappers can be invoked with the dry bulb temperature 'tdb', the pressure 'p', and one (only) of the relative humidity 'r', the humidity ratio 'w', or the wet bulb temperature 'twb'
Example 11: Total (qDotTot), sensible (qDotSen), and latent cooling (qDotLat) required for cooling air Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 10: Condition and dehumidify air by chilling and condensing some moisture: Process table Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 09: Moisture added to air: Amount (mass) Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 08b: Humidification: As a 2-step (3-state) process Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 08a: Humidification: Drying lumber with air: required volumetric air flow rate Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 07: Sensible cooling: 'qDotSen' (-ve): energy transfer rate FROM humid air Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 06: Sensible heating: 'qSen' per mass (+ve): energy transfer TO humid air Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Webel: Psy/MPsy: Psychrometrics for Mathematica: Transferred heat (energy "Q") has field names with lower case 'qTot', 'qSen', 'qLat'. Heat rates (energy per time) have field names 'qDotTot', 'qDotSen', 'qDotLat' (to avoid clashes with Mathematica core)
Example 05: Sensible heating: 'qSen' (+ve): energy transfer TO humid air Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 04: Values from dry bulb temperature 'tdb' and wet bulb temperature 'twb' Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 03b: Values from dry bulb temperature 'tdb' and wet bulb temperature 'twb' Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 03a: Values from dry bulb temperature 'tdb' and wet bulb temperature 'twb' Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 02: Values from dry bulb temperature 'tdb' and wet bulb temperature 'twb' (sling psychrometer) Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Example 01: Values from 'tdb' and relative humidity 'r' Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
Webel: Psy/MPsy: Psychrometrics for Mathematica: Humidity ratio (absolute humidity) is indicated by a lower case 'w' and measured in mass (water) / mass (dry air) units, so the SI and IP representations are equal Real (without an explicit unit system)